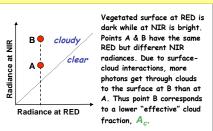
Comparing Cloud Optical Depth Retrievals at the Pt. Reyes (CA) Deployment of the ARM Mobile Facility

Alexander Marshak¹, J.-Y. Christine Chiu², Yuri Knyazikhin³, James Barnard⁴, John Schmelzer⁴, and Warren Wiscombe¹

¹NASA/Goddard Space Flight Center
²Joint Center for Earth Systems Technology/UMBC
³Boston University
⁴Pacific Northwest National Laboratory

Retrieval method

- This method retrieves "local" cloud optical properties in a fully 3D cloud situation, using zenith radiances from a 2-channel narrow-field-ofview (2NFOV) radiometer.
- These two channels, 673 nm (RED) & 870 nm (NIR), have similar cloud properties but strong spectral contrast in <u>vegetated</u> surface reflectance. Pt. Reyes is "green" (see at right) and ideal for this method!!

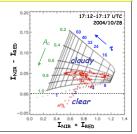

Summary

- We retrieve cloud optical properties in a fully 3D cloud situation, using zenith radiance measured from the twochannel narrow-field-of-view (2NFOV) radiometer.
- For overcast clouds, cloud optical depths retrieved from the 2NFOV agree well with those from the flux method, but they are ~30% larger than MODIS retrievals.
- For cumulus clouds, the 2NFOV retrieval algorithm is the only ground-based passive remote sensing method able to unambiguously retrieve cloud optical depth.

Retrieval method

1. Get info on the cloud optical depth au0.7 Zenith radiances in 0.6 870 nm these two channels 0.5 (IRED & INIR) are very different for a 0.4 given cloud optical 0.3 depth T, due to a 0.2 673 nm strong contrast in (RED) 0.1 surface albedo, (see figure at right). 10 20 30 40 50 Cloud optical depth

2. Get info on the cloud fraction A_c .

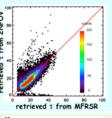


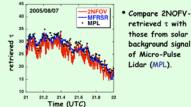
3. Retrieve τ and A_c in a fully 3D cloud situation

We calculate IRED & INIR as a function of au and A_c , and build a lookup table (LUT):

 $I_{\text{RED}} = I_{\text{RED}}(\tau, A_{\text{c}})$ $I_{\text{NIR}} = I_{\text{NIR}}(\tau, A_{\text{c}})$

<u>Observations</u> from the ARM 2NFOV radiometer (red dots) in a fully 3D cloud situation are distributed in our LUT. From here, we are able to retrieve τ & A_c

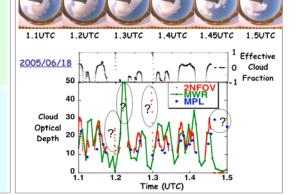

Comparison with other retrievals


Overcast cases -- comparison with retrievals from MFRSR, MWR, MPL & MODIS

• Comparison of cloud optical depths t retrieved from 2NFOV and from Multi-Filter Rotating Shadowband Radiometer (MFRSR) using 8 µm effective radius

• Comparison of cloud optical depths τ retrieved from 2NFOV and from MicroWave Radiometer (MWR), using retrieved liquid water paths and 8 μ m droplet effective

radius



Time (UTC)

**Compare 2NFOV-retrieved t with those from 11 coincident MODIS Aqua overpasses for overcast cases.

MODIS-retrieved t

Broken cloud case — comparison with retrievals from MWR & MPL

